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The Gap Problem in Antenna Theory

by

Ronold King

Cruft Laboratory, Harvard University

Cambridge 38, Massachusetts

Summary

The so-called gap problem in antenna theory is considered critically.
It is shown that whereas there exist problems related to transmission-line
end-effect and coupling between antenna and line there is no gap~and hence
no gap problern when a physically realizable complete transmitting system
is considered rather than an antenna with a fictitious mathemetically con-
venient driving mechanism.

The essential parts of a complete and practical transmitting circuit

include an antenna, a transmission line, and a coil in which an emf is in-

duced by an alternating impressed magnetic field maintained by a generator.

Typical practical circuits involving conventional open-wire and coaxial lines

are in Figs. I and 2. Note that both circuits from one end of the antenna

along one conductor of the transmission line around the coupling coil, back

along the other conductor of the line, and out to the other extremity of the

antenna (which may be the distant edge of a ground screen or the opposite

pole of a great sphere) provide unbroken conducting paths. If, in the inter-

est of pedagogical simplicity, the transmission line is reduced to zero

and the coupling coil is contracted to a short section of the antenna itself

in which an emf is induced by a varying magnetic field, an idealized system

is obtained which, in the physically unavailable limit in which the distance

along the antenna where the inducing field is active is reduced to zero

while the field is increased to maintain a given emf, is equivalent to a so-

called delta-function or slice generator. In this simple case the radiating

circuit, consisting of a single straight conductor, is unbroken. Nowhere,

either in the practical systems with long transmission lines and extended

coupling coils or in its idealized contraction is there a gap. Yet, in spite
~-1-
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of the fact that in actual radiating systems there are no gaps, the so-

called "problem of the gap" has been the subject of theoretical discussion.

Indeed, it has been asserted that the gap is "the essential part of the radiating

system"; that it is "the only source of radiant energy. "1 Note that if this

were true it would be necessary to conclude that none of the transmitters in

practical operation could radiate! It is interesting and instructive to study

and attempt to clarify the confusions and misunderstandings that must under-

lie statements that are as positive as they are untenable.

The origin of the "gap problem" in the study of antennas -- whether

cylindrical, spheroidal, or spherical - is to be found in the attempt to

analyze an antenna consisting, for example, of the two collinear conducting

cylinders shown in Fig. 3 with adjacent flat ends separated a small distance

28, as if it constituted a complete transmitting system when a mathematically

convenient electric field is postulated "across the gap. " Actually, two es-

sential components are missing. They are (1) the unbroken conducting path

between the halves of the antenna, and (2), a localized induced ernf along at

least a part of the circuit. As soon as a transmitting system is completed

in this manner, the gap and, with it,the gap problem disappears.

In the practical circuits in Figs. 1 and 2 where the conducting paths

are conventional transmission lines and the emf is induced in a distant

c oil, the gap(together with an hypothetical, rotationally syrnmetrical ex-

citing field E z which is postulated for the antenna in Fig. 3) obviously is absent.

(Note that Fig. 3 does not portray a physically meaningful complete trans-

mitting system.) This is seen more clearly in Figs. 4 and 5 from which

it is evident that the gap problem is replaced by precisely the transmission-

line problem (including coupling and end-effects) which has been analyzed
3,4in the literature. Another type of circuit in which the gap is apparently

retained is in Fig. 6. The antenna consists of the same halves shown in

Fig. 3 but the transmitting system is completed in a theoretically possible

but pra~ftically unavailable manner. The gap in Fig. 3 is bridged at the

r enter by a thin, perfectly conducting wire in which an alternating emf is

induced. The presence of the wire and generator transforms the gap into

a radial transmission line. Since the antenna is assumed to be perfectly

conducting (or sufficiently highly conducting so that the skin depth is very
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CYLINDRICAL ANTENNA
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FIG.6 TRANSMITTING SYSTEM WITH RADIAL
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small compared with the radius of the antenna) all currents are confined

to a thin skin at the surface. Hence, radial sheets of surface current di-

verge from the center of the upper, converge to the center of the lower

surface of the radial transmission line where it joins the vertical wire.

Evidently, the determination of the electric field E at the end r = a of

the transmission line where it has the cylindrical antenna as its load,

the definition of the voltage V (r=a), and the evaluation of the current

I .(r- a) in terms of the emf V at r=O are parts of a transmission-line

problem that includes radial end-effects near r = a. Note that Fig. 6

differs from a simple antenna with external generator of delta-function

type only in having the continuous conducting path at the center of the

antenna reduced from a radius equal to that of the antenna to a much

smaller value. This complicates the problem on the one hand byin-

serting a radial transmission line between the antenna and the localized

einf, it simplifies it, on the other hand, by permitting the use of a

cross-sectionally dimensionless delta-function generator instead of one

distributed as a belt around the antenna.

Instead of analyzing the circuit of Fig. 6, it is analytically more

convenient and essentially equivalent to investigate the circuit shown

in Fig. 7 where the radial transmission line is replaced by a biconical

transmission line with a point-generator at its apex. This generator

is mathematically attractive since it is equivalent to a singularity in

the electric field. It may be approximated in practice by the arrangement

in Fig. 8 where half of the cylindrical antenna is placed over a conducting

ground screen and is driven from a conical transmission line. This, in

turn, is connected at its apex to a coaxial transmission line of sufficiently

small cross section so that the field at the end, r=a, of the conical trans-

mission line is the same as when driven by a point generator. For the

present study of the "gap problem" the simpler circuit of Fig. 7 is more

convenient. In this case the driving voltage or emf of the delta-function

generator is defined by

0
lir (R)Rd

0



TR194 -4-

The current in the generator at the apex is 1(O) and the impedance of the

biconical line with its end load is

Z.o = O)/1o) (2)

As shown by Schelkunoff 5 the total radial current I(R) in the upper cone

of the transmission line is given by

IR(R) = I(R) + I(R) (3)

where I (R) is the dominant-mode current and.I (R) is the sum of the

currents associated with the higher modes. These vanish identically at

R = 0 for all angles 0o of the cone. The dominant-mode current is

Id(R) = I(0)coSoPR - jYV(0) sinPoR (4)

where Yc = l/Zc is the characteristic admittance and
to c

Z . n cot 0  (5)c "--

is the characteristic impedance of the biconical transmission line. It

can be shown that in so far as the current Id( O) = IR(0
) in the generator is

concerned, the effect of the Complementary currents in cancelling all or

part of the dominant-mode current may be simulated by ignoring the com-

plimentary currents and providing an apparent terminal admittance across

the biconical line at R = of such value that the part of the current IR()

which enters this terminal admittance is equal to the part cancelled by the

complimentary currents. In the case of the thin biconical antenna with @

very small, the total current IR(,t) is essentially zero so that virtually the

entire dominant-mode current I(L) is cancelled by equal and opposite highe r-

mode currents sinced( )I -I (t). Hence, the complimentary currents

could be ignored only by providing an apparent dominant-mode terminal

admittance Y that carried the entire current( ). In the case at hand

with e near ir/2 the situation is different since practically all of the domi-
0nant-mode current at R = L-becomes the axially directed surface current

I (z = 6). When S is sufficiently near w/2 the higher-mode current I

is very small and cancels an insignificant part of the dominant-mode

currentI(,t). Actually the higher-mode current is responsible for trans-

mission-line end-effects. Just as in the case of the two-wire line3 these
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may be ignored in their effect on the current far from the load if an appro-

priate terminal-zone admittance is provided. Thus, the total apparent ter-

minal admittance is given by

- 4a = -6 -T (6)

where Y is the dominant-mode load impedance and Y is the terminal-zone
-6 MT

admittance that takes account of end-effect. With 0 near ir/2 it is essenti-
0

ally susceptive, so that

YT - JWCT (7)

The load impedance Z5 = 1/Y 6 is defined by

-6 l/Y6 d

16 = _-_ 1 (8)
-6

whereI is the radial current leaving the end of the upper conductor of the

biconical line at R =t' a to become the axial surface current on the antenna.

Since E (4) in (8) is the dominant-mode field in the biconical line where all

currents are radial and, hence, perpendicular to the direction of _%, itfollows

from the definition of the scalar potential by - grad = E + jwA that

E 1 86 1 86E - -JwA -. (9)
where 6 is the scalar potential and N a component of the vector potential.

Substitution of (9) in (8) with R - , gives

6

_ d6_Y(t) - 6(6) -6(_.- 6)
Z 6 - __--- (10)

-6 -6 -6

If the exterior field is expressed in terms of the current on the

cylindrical antenna and matched to the internal field at . -" a,

ir.O eo _ i _ or -6 K z _ 6, the impedance (10) may be determined. A

part of the exterior field is required to match the interior complemen-

tary field. This represents the terminal-zone coupling between antenna
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and biconical transmission line. The actual evaluation and matching of the

interior and exterior fields is of no interest here,

The relation between the apparent load admittance Ye of the biconical

transmission line and the driving-point admittance Y--ois obtained from the

well-known transmission-line formulas for the dominant-mode voltage and

current. They are

Vdt) Y V(O)co - jZ 1(O) sinPof (1la)

I(t)= 1(°)c°So - Y V(O) sino' (llb)

It follows that

Id(t) Y c°spot -Jc j sinpo()

-o- jZcX sino P

where

Y I(O)/V(O) (13)

is the driving-point admittance at the apex of the biconical line.

Up to the present no restrictions have been placed on the length,& of

the biconical transmission line. Since with 0 near it/2, " a, where a is0

the radius of the cylindrical antenna which is assumed to satisfy

Poa '< 1 (14)

it follows that (12) reduces to

Y - jY c a
CO 1 - jZcY(1Poa 5)

This formula may be simplified further by noting that with o near w/2,

Z 2= 10 ,n cot(G0 /2) is very small. Hence,C0

Y = Y -jYcP a =Y - jwC (16)
ho __o 0 -0 g(

where, with o W/vo'

alEi
C avoZ _ (17) -g 0 C

in cot
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In (17), c0 is the capacitance per unit radial length of the biconical line. It

follows with (6) and (7) that the driving-point admittance at the apex of the

biconical line is

-Lo " Yfa + g = Y + jw(CT + Cg) (18)

Note that (18) is a special form of (12) solved for Yo0 viz.,

Y.acospo, "+ jYcsino (Y(19

-o cos P4 + jZyeSino(

when both P o and Z are sufficiently small.

The confusion regarding the significance of the gap in antenna theor

arises from a failure to recogniz that (18) is not a general form but is a

special case of (19).

The following conclusions may be drawn from (18). (1) The driving-

point impedance Y of a cylindrical antenna is equal to the impedance
Z-6 (where V is the voltage across the gap of length 26 and-I is
- 6 = 6 16  -6 -6
the current entering the antenna at the edge of the gap) in parallel with

the effective "gap capacitance" C + C between the two adjacent end-surfaces
g T

of the antenna. (2) As the width 26 of the gap is decreased by making 0 0

differ less and less from 7r/2, the essential part C of the gap capacitance
g

increases without limit. This is seen from (17). (3) It follows that in the
limit 6--.0, the driving-point susceptance B° becomes infinite. Since the

generator is short-circuited and completely enclosed by metal, no power

can be radiated from the antenna. If it is now assumed that the interpre-

tation of (18) is typical for all center-driven cylindrical antennas, the follow-

ing conclusion is reached: (4) Only antennas with finite gaps can radiate.

Finally a naive application of the Poynting vector theorem suggests that:

(5) A radiation comes out of the gap.

In what way are these "conclusions" erroneous? This may be dis-

covered readily by rephrasing them in a manner consistent with the general

formula (19) instead of the special formula (18). (1) The driving-point

admittance Y of a section of transmission line of length e with an

apparent load admittance Yta is given by (19). If - is sufficiently short and
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the characteristic impedance Z sufficiently small this reduces to(18). The-C
apparent load admittance Yia is equal to the actual load admittance Y =V /I

in parallel with a lumped capacitance that takes account of terminal-zone

effects. (2) As the distance between the two conductors of the transmission

line is reduced, the characteristic impedance Z decreases without limit.
-C

For the biconical line this is seen from (5). For coaxial or parallel wire
b~n~) cs -1 b wihrdcst eowelines Z has the factor -n( - ) or cosh-(-? -) which reduces to zero-- C aa

b approaches a or 2a, respectively. (3) It follows from (19) that in

the limit 6---> 0 when Z -30 and Y -->o the input susceptance of the section
-c -C

of line is infinite since the two perfect conductors are everywhere in

contact and do not constitute a transmission line. Since this leaves the

antenna completely isolated from the generator, no currents are maintained

in it and, therefore, no electromagnetic field is set up by them. That is,

the antenna does not radiate. (4) A transmission line like that in Fig. 7

that happens to be short, biconical, and "inside" the antenna so that it
,ooks like a simple gap instead of a section of line is characteristic only

of certain special cases that actually are highly artificial and impractical.

Every short section of transmission line, whether two-wire, coaxial, bi-

conical, or radial, is not merely a lumped capacitance in parallel with the

load. In all cases the entire current from the generator to the load tra-

verses the two conductors-whether flat plates, cones, or wires-in oppo-

sire directions. They form a necessary series connectionbetween generator

and load. It is obvious that only transmission lines consisting of two con-

ductors with finite spacing can transmit power to a load. This is as true

of two-wire lines as of biconical or radial lines; it has nothing to do with

gaps. Every antenna in which currents are induced radiates in the sense

that these currents maintain a far-zone field. Practical antennas never

have gaps. (5) It is readily verified that the Poynting-vector theorem is

useful in locating the generator in a complete transmitting system, not the

element that carries the currents that maintain the radiation field. In

order to radiate, i.e., maintain far-zone fields, antennas must have cur-

rents maintained in them. This may be accomplished by direct connection

to a transmission line from a distant generator or by coupling toavarying

magnetic field maintained by a generator. A gap is not required. Thus,

it may be concluded that there are transmission-line problems and coupling
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prob]erns in antenna theory but no gap problems.
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